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The global numerical diffusion of a model for the low-Mach-number 
simulation of free mixing layers is investigated. The numerical model 
solves the inviscid time-dependent conservation equations for mass, 
momentum, and energy for ideal gases. The equations are solved using 
an explicit Flux-Corrected Transport (FCT) algorithm, directional 
timestep-splitting techniques on structured grids, and appropriate 
inflow and outflow boundary conditions. Effective measurement of the 
numerical diffusion of the model in uniform grids is performed by com- 
parison of the laminar spread of the simulated mixing layers with that 
predicted by boundary layer theory. The results show that the residual 
numerical diffusion of the FCT model can emulate physical viscosity for 
laminar shear flows at moderately high Reynolds numbers. The global 
numerical diffusion is not very sensitive to changes in free-stream 
velocity ratio and can be reduced in a predictable way by refining the 
grid spacing. 0 1992 Academc Press. Inc. 

1. INTRODUCTION 

Recent papers [l-6] have reported results of numerical 
simulations of subsonic, spatially evolving two- and three- 
dimensional planar shear layers using monotonic FCT 
models. The numerical model solves the time-dependent, 
compressible, inviscid conservation equations for mass, 
momentum, and energy in three dimensions in order to 
examine the evolution of large-scale coherent structures. 
The equations are solved numerically using a fourth-order 
phase-accurate FCT algorithm, directional timestep-split- 
ting techniques on structured grids, and appropriate inflow 
and outflow boundary conditions [ 1,2]. This approach has 
been shown to be adequate for simulating the moderate and 
high-Reynolds-number vorticity dynamics in the transition 
region of free flows and reproduces the large-scale features 
of the flow observed in the laboratory experiments, e.g., the 
asymmetric entrainment [3], the distribution of merging 
locations [4], the spreading rate of the mixing layers [S, 61, 
and the basic three-dimensional features of the vorticity 
dynamics [6, 71. In this paper, we address some of the 
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numerical issues of resolution which are important for 
validations in the studies of physical mechanisms in these 
simulations. 

A large-eddy-simulation approach is used to compute the 
evolution of the transitional flow dynamics. The nonlinear 
FCT high-frequency filtering, combined with the conser- 
vative, causal, and monotone properties of the algorithm, 
are expected to effectively provide a minimal subgrid model 
by maintaining the large-scale structures while numerically 
smoothing the scales with wavelengths smaller than a few 
computational cells. In this framework, the small residual 
numerical viscosity of the algorithm, combined with 
unresolved small-scale convection at high Reynolds 
numbers, mimics the behavior of physical viscosity. 

The objective of this paper is to study the effective 
numerical diffusion of the algorithm in the low-Mach-num- 
ber simulation of free mixing layers and its dependence on 
gridding and free-stream velocity ratio. A byproduct of this 
work is to assess the gridding requirements for an FCT- 
based shear-flow model including physical viscosity. In Sec- 
tion 2, we introduce the main steps of the FCT algorithm as 
used in the model and discuss the problem of measuring the 
residual numerical diffusion of the scheme. In Section 3.1, 
we review the calculation of the laminar spread of a free 
mixing layer based on boundary layer theory. The theoreti- 
cal results are used as reference for the effective measure- 
ment of the global numerical diffusion of the model in 
Section 3.2. The final conclusions are given in Section 4. 

2. THE FCT ALGORITHM 

We restrict our discussion to the one-dimensional, 
explicit, fourth-order phase-accurate FCT algorithm [S] 
used in the shear-flow applications. The numerical model 
solves a system of generalized continuity equations of the 
form 

(1) 

165 0021-9991/92 55.00 
Copyright 0 I992 by Academic Press, Inc. 

AI1 rights of reproduction in any form reserved. 



166 GRINSTEIN AND GUIRGUIS 

where f typically represents mass, momentum, or energy 
densities, h is an appropriate source term dependent on the 
flow variables and their spatial derivatives, v is the fluid 
velocity, and r is a spatial variable. The algorithm consists 
of a two-step predictor-corrector scheme which ensures that 
the conserved quantities remain monotonic and positive 
when so required. First, it modifies the linear properties of 
a high-order algorithm by adding diffusion during convec- 
tive transport to prevent dispersive ripples from arising 
when sharp discontinuities are present. The added diffusion 
is then removed in the antidiffusion phase of the algorithm 
in such a way that the residual numerical diffusion is mini- 
mal while preserving the monotonicity and positivity of the 
scheme. The algorithmic details for the solution of Eq. (1) 
are discussed in general elsewhere [9]. In order to introduce 
the basic ideas it suffices here to restrict the discussion to the 
case of the mass density equation (f = p, h = 0), case for 
which the steps are briefly discussed below. In the first stage 
of the algorithm, the convection phase involves 

f’=f!“‘-[&. f!“’ 
J J + 112 J + l/2 -EJ-,,,f;“),,,lY @a) 

followed by the diffusion phase 

x=f’+ Cvi+I,2(f,l”+)l-f::“‘)-vj-1/2(f~”’-ff::n)l)], (2b) 

where fj”) denotes the variable f at grid pointj and timestep 
n, j + l/2 denotes the midpoint between grid points j and 
.i+ 1, 

6t 
&j+ l/2= vj+ 1/2-y 6r 

6t and 6r are the integration timestep and the grid spacing, 
respectively, and [S] 

“j+1/2=a+~~J2+1,2. (4) 

In turn, the correcting antidiffusion stage consists of 

where the raw antidiffusion fluxes Gj+ ,,2 are defined by 

@j+1/2=Pj+l/2(f~+I -fi), (6) 

and 6 denotes the corrected antidiffusion flux. Mono- 
tonicity is preserved by the flux correction by ensuring 
that the diffusion compensation generates no new maxima 
or minima in the solution and existing extrema are not 

accentuated [ 81. In practice, this is enforced by defining the 
corrected fluxes as 

&j+ 112 

= Max[O, Min(S(x.+, -J3.+1)9 I@j++1/2l, s(J-&I))19 
(7) 

with S = sign($+ r -jl), and IS( = 1. 
In the schemes used in the FCT shear-flow models, the 

antidiffusion coefficients pj+ 1,2 are defined in terms of a 
diffusion parameter, D,, by 

Pj+l/Z = iDcll -&j’+ l/2)5 (8) 

where D, 5 1. For D, = 1, the scheme reduces to the fourth- 
orderphoenical FCT scheme [8]. A special case arises in the 
absence of convection, when .sj+ 1,2 = 0. In this case, in the 
vicinity of a sharp dicontinuity the antidiffusion flux Dj+ 1,2 
survives intact through the flux corrector and cancels the 
corresponding diffusion flux exactly if D, = 1, in which case 
the discontinuity is preserved after the FCT cycle. Standard 
linear stability analysis shows that for D, < 1 the scheme 
remains fourth-order-phase-accurate, and the amplitude 
accuracy becomes second-order, with the second-order 
error-term for the amplitude proportional to (1 -DC). 
Thus, by choosing D, slightly smaller than unity (typically, 
D, = 0.997-0.999 in the shear-flow applications) a small 
nonvanishing residual numerical diffusion can be provided 
by the scheme. A local estimate of the residual numerical 
diffusion introduced by D, in the limit v=O has been 
communicated to the authors [lo] and is briefly described 
in what follows. Combining (2) and (5) and comparing 
with the second-order, central-differenced version of the 
one-dimensional diffusion equation, 

we can identify 

6t 
9 (h)2 - 6 

--!(l -DC), 

or equivalently, the diffusion coefficient is 

(9) 

(10) 

(11) 

Alternatively, we can rewrite this expression in a form 
useful in calculations performed with a fixed Courant 
number, c = dt( (vi + a&J&, 

,=~(,_,~)6r(lvl+a),,k, (12) 
C 
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where a is the local speed of sound. The inversely propor- 
tional dependence of 9 on c reflects the fact that a larger 
amount of residual numerical diffusion results from taking 
a lower value of c and correspondingly shorter timesteps. 

Equations (11) and (12) give local estimates for the 
numerical diffusion of the algorithm in the absence of con- 
vection. Standard one-dimensional tests show that sharp 
discontinuities are maintained by the FCT algorithm and 
remain confined within 3-5 cells (e.g., Ref. [ll)]. This 
indicates that the actual residual numerical diffusion of the 
algorithm is nonlinear and somewhat dependent on the 
solution because of the flux correction. As a consequence, 
even if we enforce constant 6r and c in the simulations-in 
which case Eq. (12) suggests that the concept of numerical 
diffusion can be physically meaningful-the effective 
(global) numerical diffusion in multidimensional spatially 
evolving shear-flow simulations cannot be estimated using 
straightforward extrapolations from one-dimensional local 
results. Thus, we need to obtain practical measures of the 
effects of numerical diffusion when nonlinear convection 
and compressibility are present, and when we have shear 
discontinuities rather than contact discontinuities. The 
present approach focuses on the initial laminar spread 
of a step-function velocity profile due to viscous (numerical) 
diffusion in the limit of low Mach numbers. In this case, 
we compare the results of the simulations with the known 
incompressible solution. 

3. LAMINAR SPREADING OF 
THE MIXING LAYER 

3.1. Boundary Layer Theory 

We consider the laminar spread of a mixing layer initially 
defined by a step-function profile for the streamwise velocity 

(a) 

U, 
, !3(d 
I I y=m 

I 
t , 

* ! 
u2 

I 
x=0 

- 

il-- 

-- y=o 

y= -co 

and zero transverse velocity. The flow configuration is 
indicated schematically in Fig. la, where the laminar spread 
of the velocity profile (as given by g(q) for x > 0) can be 
calculated under certain flow conditions using boundary 
layer theory [ 121. In this regime, the flow can be considered 
virtually incompressible, and the problem involves a 
thin shear layer with o/u 4 1. Under these conditions, the 
pressure gradients are negligible and the steady-state 
incompressible equations describing the problem can be 
written 

g+Ko, ay 
au au a% u-+u--v--=0, ax ay aY* 

(13) 

(14) 

where v is the kinematical viscosity. The boundary condi- 
tions for the velocities in the steady state problem are 
specified by 

u(0, y > 0) = Ul) u(0, y < 0) = u,, u(0, y) = 0, U5a) 

u(x, y= +c.o)= u,, u(x, y= +co)=O, (15b) 

u(x, y= -co)= u*, u(x, y= -co)=O, (1%) 

with U2 > U,. 
Defining the similarity variable 

q = y(xv/U,) - 112, (16) 

the solution can be expressed in terms of a function G(q) 
related to the stream function Y and the velocities through 

Y= (vxU,)“* G(y), (17) 

u=u dG(q) 
-= U*g(?). 

2 4 
(18) 

l(b) 

FIG. 1. (a) Flow configuration for the theoretical study of the laminar spread of a mixing layer initialized at x = 0 with a step-function velocity profile; 
(b) mixing layer spread predicted by boundary layer theory for A= 23, 10, and co. 
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The function G(q) satisfies the ordinary differential equation 

G d2G(d + 2 d3G(v) = o 

dv2 
7) 

(19) 

which must be solved with the boundary conditions 

G(0) = 0; G'(-co)=1= U,/J,; G’(+co)=l. (20) 

Equation (14) is solved numerically using finite differences. 
Typical solutions obtained for the laminar spread of an 
incompressible mixing layer are shown in Fig. 1 b for A= 2, 
5, 10, co. These solutions are used as reference to measure 
the effective numerical (viscous) diffusion of the algorithm 
when simulating thin shear flows. 

3.2. Simulated Mixing Layer 

In order to talk about a meaningful effective numerical 
diffusion when D, 5 1 and measure its effects, we perform 
simulations for fixed Courant numbers in appropriate 
laminar flow cases using uniform grids in the regions of 
interest. We restrict our time-dependent simulations to the 
limit of low Mach numbers. In this limit, the flow is virtually 
incompressible and a comparison can be set with the results 
in Section 3.1 after attaining the steady-state regime using a 
time-marching approach. We seek a measure of the effective 
viscous diffusion by comparing the numerical spread of an 
initial step-function streamwise velocity profile with the 
laminar spread predicted by boundary layer theory. The 
choice of D, 5 1 is dictated by the interest in numerically 
simulating the large-scale features of transitional, free shear 
flows in the limit of large (but finite) Reynolds numbers, 
while maintaining the accuracy of the scheme as close to 
fourth order as possible. In the present study we have 
specially focused on the case D, = 0.999, which has been the 
choice of most of the previous shear-flow simulations using 
the FCT numerical model. The dependence of the results on 
D, is then discussed at the end of the section. 

Shear flows are highly unstable, and in order to compare 
the development of the mixing layer with theoretical results, 
we need to isolate the laminar (viscous) growth of 
the mixing layer from the growth due to the Kelvin- 
Helmholtz instability. An unavoidable initial mismatch due 
to discretization between flow and boundary conditions 
near the inflow introduces small transverse velocity pertur- 
bations which excite the Kelvin-Helmholtz instability in 
the shear layer near the inflow boundary [3]. This initial 
instability is subsequently followed by vortex roll-up and 
global self-sustained instabilities, in which new vortex 
roll-ups are triggered in the initial shear layer by pressure 
disturbances originating in the fluid accelerations down- 

stream [13]. To ensure that the spread of the streamwise 
velocity profile is due only to the residual numerical 
diffusion of the algorithm, we have chosen to force the 
transverse velocity to maintain its initial and inflow value 
(zero) throughout the computational domain during the 
simulations. 

Since the FCT shear-flow model is nearly inviscid, the 
model is expected to be meaningful for high-Reynolds-num- 
ber transitional flow regimes-in which the large-scale flow 
features are independent of Reynolds number (Re). The 
approach used to obtain measures of the effective residual 
numerical viscosity involves approximations which become 
valid in this limit of high Re, where v/u = Co(d) = 0( l/Re), 
and 6 is the thickness of the mixing layer. This approach is 
also consistent with the thin-shear-layer approximations 
used to derive Eq. (14) from the incompressible Navier- 
Stokes equations. In particular, as in boundary layer theory, 
the viscous diffusion term proportional to a2u/ay2 is 
the dominant one in this limiting flow-regime, and also 
responsible for the observed numerical spread of the 
simulated mixing layer in the framework of the present 
study, where the streamwise gradients are much smaller. 

With an explicit unsteady model we can not practically 
afford to deal with very small Mach numbers because the 
small timesteps dictated by the Courant condition for 
numerical stability determine very long corresponding runs 
to reach steady state. A compromise choice in this work in 
order to have practical calculations and at the same time 
nearly incompressible flow is to use mean free Mach num- 
bers, J& -0.3-0.4, for which the compressibility effects 
as measured by the relative mass-density variations 
Ap/p - d2/2 [ 141, are at most of the order of 4-8 %. 

Figure 2 shows the flow configuration for the simulated 
mixing layer consisting of two coflowing streams of air 
entering a long chamber, where the separation between 
walls is chosen sufficiently large to ensure that the mixing 
layer growth is unaffected by their presence. Inflow and out- 
flow boundary conditions are imposed where appropriate in 
the streamwise direction (x), and reflecting free-slip wall 
boundary conditions are required in the transverse direc- 
tion (y). 

The inflow and outflow boundary conditions were 
developed and tested for multidimensional FCT calcula- 
tions [i-3]. The inflow boundary conditions specify the 
density and velocity of the jet and impose an homogeneous 
Neumann condition on the energy. These conditions are w 

FIG. 2. Flow configuration for the simulated mixing layer. 
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implemented at the inflow by specifying the guard-cell 
values for the mass and velocity densities, 

PC, = Pinflow, (214 

uG~ = %flow = u(Y)~ @lb) 

uG, - - 0, WC) 

values of the energy are then calculated through the 
equation of state as a function of the other flow quantities. 
The inflow conditions allow the pressure at the inflow to 
vary in response to pressure waves generated by events 
downstream. An important result of allowing this feedback 
to occur is that physical, self-sustained global instabilities 
can occur naturally in the calculations [ 131. 

and imposing a floating condition on the pressure, 

P&=Py, Wd) 

where the subscripts G, and 1 refer to the guard cells and to 
the first row of cells inside the computational domain (at the 
inflow), respectively. The guard-cell values of the energy are 
calculated through the equation of state as a function of 
the mass density, momenta, and pressure. By imposing 
a floating condition on the pressure at the inflow, finite 
(unsteady) cross-stream pressure differences are allowed to 
appear in the initial shear layer in response to acoustic 
waves generated by fluid accelerations downstream. 

Since the numerical diffusion depends on the grid 
spacing, the latter is kept constant in the region of shear 
layer development. Twenty or more evenly spaced com- 
putational cells are used in the transverse direction in the 
neighborhood of the center of the shear layer, which is 
initially defined by a (one-cell) step-function discontinuity. 
Other cases, involving nonsquare uniform griddings and 
geometrical stretching in the streamwise direction are also 
considered in order to specifically investigate the effects of 
non-uniformities. The particular features of the computa- 
tional grids used in this work are summarized in Fig. 3. The 
actual dimensions of each domain in Fig. 3 are chosen 
in such a way to ensure computational efficiency while 
allowing an adequate description of the evolution of the 

The boundary conditions at the open boundary down- 
stream approximate the time-dependent flow equations 
at the boundaries, by linearizing the inviscid flow equations 
and reducing them to advection equations in the outflow 
direction (x), 

agiat + 2dloc aglax = 0, (22) 

where uloC is the local x-component of the velocity near the 
boundary. This equation is discretized by a first-order 
upwind scheme. The result is a relation between the outflow 
guard-cell value QE, as a function of Qz; ’ and Q>- ‘, 

‘I:‘..,.“‘;’ j-gy--J 
o Az = Ay = 0.024 

0 14 0 14 

2 
C) (*At) 1 

Q”G,=Q”G,‘(l-6)+&Q;-‘, (23) 

where n and n - 1 denote the current and previous integra- 
tion cycles, and N corresponds to the boundary cell [2]. In 
addition, 

0 X (cm) 

6 
4 (*,*A) 1 

oI :::6d106=2,5xAy j 

0 17 

E = uloc AtlAx,, (24) 

where At is the integration timestep, and Ax, is the size of 
the computational cell at the outflow boundary. The out- 
flow conditions specified by Eq. (23) are imposed on the 
mass- and momentum-density variables. Information about 
how the flow relaxes to ambient conditions is provided 
by specifying the ambient pressure Pam,, at infinity and 
imposing a relaxation rate on the pressure [l, 31. The 
guard-cell value of the pressure is defined through the 
expression PGN = P, + ( Pamb - P,,,) x Ax,/x,,. This defines 
PGN by interpolating between the pressure value at the Nth 
cell and the value P.,, soecified at infinitv. The euard-cell 

‘ . . I . ”  I  l u ~~ grid (stretching factor = 1.15). 

FIG. 3. Computational domains and grids used in the mixing layer 
simulations: 0, c = (Cr, + a) Atidy = 0.46; *, 20 evenly spaced computa- 
tional cells are used in the y-direction around the shear; wall boundaries 
are approached through geometrical stretching of the grid (stretching fac- 
tor = 1 .15); t , Gridding in x-direction is uniform; t , Grid is geometrically 
stretched in x-direction for x > 4 (stretching factor = 1.03); 0 , c = 0.4; 
$, 60 evenly spaced cells are used in the y-direction around the shear; 
wall boundaries are approached through geometrical stretching of the 

;=I 
0 19 
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shear layers. The timesteps used in the calculations are 
determined from the free-stream conditions by imposing 
Courant numbers in the range 0.14.46. 

We examine a number of different cases, in which we 
study the spreading of u(y) from an initial step-function 
velocity profile at x = 0 as a function of streamwise distance 
x, in terms of the free-stream velocity ratio, gridding, and 
Courant number. In each case, the time-evolution of 
the calculations is pursued long enough to ensure that the 
initial transients flow out of the computational domain 
and a steady state regime is attained. We reduce the 
calculated profiles of normalized streamwise momentum 
g = (pu)/(& U,) at different streamwise locations with the 
similarity variable, q = ~(xu/U,)- 1’2, where p z p0 = 
ambient mass density, and o is an adjustable viscosity 
parameter. The effective numerical diffusion o, is defined to 
be equal to the viscosity parameter giving the best fit of g(v) 
to the laminar mixing layer solution g(q) = u/U,. The lit is 
based on the least rms deviations 0, and oz defined by 

o:(v) = - N ‘,y f? : CS(?,,J- dIl,i)12> x Y/=1 i=l 
(25) 

1 
G4= (Ndx- l)(N,- 1) 

(N,.- 1) (Nx- 1) 
X ,C, jC, [(Ag(rl,,i) - 4d?Li))lAVLi12~ (26) 

where q/,i=V/,i(V)= ~~(xiu/~2)~1’2~ CY~, ~2, -., Y,v,I and 
cx, 7 x2, . ..Y xNX] are the fixed streamwise and cross-stream 

0.1: j- (a: ) x=5 

0.16 ( 
vi (CnlL 

-1 
) 

sampling locations, respectively, and A is the difference 
operator, AH(i) = Z-Z(i + 1) - H(i). This approach is 
intended to obtain a quantitative global measure of the 
effective numerical diffusion of the algorithm and to 
examine the extent to which the numerically simulated 
profiles can be reduced to a similarity solution. The proce- 
dure is expected to give an estimated effective Reynolds 
number associated with the (small) scales of the order of a 
few computational cells. 

Typical results corresponding to simulations with 2 = 5 in 
grid a of Fig. 3 are shown in Fig. 4. Figure 4a shows the 
behavior of (or and cr2 as a function of u. Associated with the 
particular grid chosen, the figure shows least deviations for 
u=u e z 0.16 cm’sec- ‘, corresponding to air viscosity at the 
standard temperature and pressure conditions of the 
simulations. Profiles of g(r]) are compared with g(q) in 
Fig. 4b, where the markers correspond to actual grid points 
and distinguish between different streamwise stations. The 
spreading of the initial step-function profile is essentially 
confined within 3-5 computational cells for the range of 
streamwise locations considered, and the calculated points 
collapse quite well in the vicinity of the theoretical curve. 
The optimal lit in this case leads to an effective Reynolds 
number, Reefl= .%/v e z 1800, where 0 = (U, + U,)/2, 
and 6 = 6y, is taken to be the initial thickness of the 
shear layer. Based on Eq. (12), with U, = 2.0 x lo4 cm/set, 
a = 3.5 x lo4 cm/set, and c = 0.5, the local estimate of the 
numerical diffusion 9 for this case turns out to be nearly 
three times larger than v,. A larger local prediction for the 
effective numerical diffusion is expected, since Eq. 12) will 
estimate the transverse numerical diffusion of the shear 

FIG. 4. Mixing layer simulation on grid a in case 1= 5, D, = 0.999. (a) Root-mean-square deviations (r, and oz. (b) Comparison of momentum 
profiles g(q) for o, = 0.16 cm’sec-’ at selected streamwise locations with profile (g(q)) predicted by boundary layer theory. 
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without accounting for the streamwise convection of the 
fluid elements. 

The numerical diffusion is slightly different on each side of 
the shear layer. This can be observed in Fig. 4b for I = 5, 
which suggests that the diffusivity is smaller on the slower 
side (9 > 0). The dependence of this diffusivity difference as 
a function of free-stream velocity ratio 1 can be obtained 
by examining the partial rms deviations pi + and 0, _, 
corresponding to q > 0 and q < 0, respectively, defined by 

&<u) =A C C2(?!,i) - S(?l,i)l’. (27) x Y fW.t20 

In Fig. 5 we plot (TV, g, + , (TV _ for the extreme values of 
velocity ratio considered here, namely for 1= 2 and A= co. 
The separation between the minima of r~ I + and (r I _ can be 
used to measure the difference between the numerical dif- 
fusivities on each side of the shear layer. These differences 
are less pronounced for the case A= 2 with more nearly 
similar free-stream velocities, and can be attributed to a 
small streamwise-velocity-dependent contribution to the 
global numerical diffusion, associated with the integration 
in the x-direction. The origin of this contribution can be 
understood locally by noting that the antidiffusion will 
never cancel the diffusion exactly at the end of the FCT cycle 
if convection cannot be neglected (cf. Eqs. (4) and (8)). A 
local analysis similar to that in Section 3.1 shows the 
presence of an additional velocity-dependent diffusion term 
with expected behavior of the form O(cSxu*), which is con- 

_--- h=m --.-- A=2 -+- I 

FIG. 5. Mixing layer simulation on grid a. Dependence of diffusivities 
on each side of the shear layer on velocity ratio I for D, = 0.999. The 
arrows indicate least values of o, at intersections of curves of partial 
deviations CJ , + and 0, _ . 

sistent with the observed (global) differences. Alternatively, 
velocity-dependent discrepancies between numerical and 
theoretical results can also be expected to some extent due 
to the fact that the flow is solenoidal in the theoretical 
(incompressible) case, whereas the regime of the computa- 
tions is characterized by low, but finite, Mach number. 
More specifically, in the framework of the present computa- 
tions, av/ay is independent of au/ax and vanishes by 
construction, so that the computed velocity field has a non- 
zero divergence, V u = &/ax # 0. Thus, zones of positive 
(negative) divergence appear during the development of the 
mixing layer, as the top (bottom) stream accelerates 
(decelerates), which could also explain the larger (smaller) 
diffusivity observed in the computed profiles. 

Figure 6 shows the dependence of the rms deviations (T, 
on the free-stream velocity ratio J. in grid a of Fig. 3 for fixed 
U,=2x 104cmsec-‘. The optimal value a, is not very 
sensitive to changes in ;1, which is consistent with the 
local estimate for the numerical diffusion (Eq. ( 12)) since 
(Id + 4peak is the same for all cases. 

Figure 7 shows the typical linear dependence of u, on the 
diffusion parameter D,, in qualitative agreement with the 
linear dependence on (1 -DC) predicted by the local 
estimate (Eq. (12)), but with a slope significantly smaller 
(e.g., of the order live times smaller on grid a, for J. = 5). As 
pointed out above, a smaller actual effective diffusivity than 
that predicted by Eq. (12) can be attributed to the fact that 
the latter accounts for the local cross-stream transverse 
numerical diffusion of the mixing layer when no streamwise 
convection is present. 

0.15 

a1 

0 

i- 

0.;3 b.16 vi (cm2sec 
-1 

) 
0.5 

FIG. 6. Mixing layer simulation on grid a for D, = 0.999. Dependence 
of global numerical diffusion on velocity ratio 1. 

581/101/l-12 
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1 I I I I 
0.004 0.008 

(l-De) 

FIG. 7. Mixing layer simulation on grid a. Dependence of global 
numerical diffusion on diffusion parameter D,. 

Figure 8 shows a comparison similar to that in Fig. 4b 
(D, = 0.999), for the case D, = 0.990, corresponding to the 
highest value of u, in Fig. 7. The spreading of the step-func- 
tion is now significantly faster, i.e., involves more computa- 
tional cells at shorter distances from the origin than those 
considered in Fig. 4b. The results also indicate that an 
improved agreement with the theoretical slope is attained as 
the effective numerical diffusion u, increases. 

1 

Qbl) 

C 

A X = 1506 

l x=2006 

8 I  I  I  

-10 0 1) 10 

FIG. 8. Mixing layer simulation on grid a in case 1= 5, D, = 0.990. 
Comparison of momentum profiles g(q) for o, = 0.16 cm&- at selected 
streamwise locations with profile (g(q)) predicted by boundary layer 
theory. 

1000 

100 

UeX1O2 

(cll12see - ') 

10 

1 

h=5 

D, =0.990 

/ 
/ 

/ 
/ 

, / 
/ / 

/ 
/ / 

16' . / 

/ 

/ 
/ 

/ 
a 

/ D, =0.999 

‘: 
10 6x * loo (cm) 100 

FIG. 9. Mixing layer simulation on grids a-c, I = 5. Dependence of 
global numerical diffusion on grid spacing for D, =0.990, 0.999. The 
dashed lines have the slope a, = 1 predicted by Eq. (12). 

Figure 9 shows the effect of grid spacing on the rms devia- 
tions for ,I = 5, by considering a finer (Fig. 3b) and a coarser 
grid (Fig. 3c) than that used for the cases in Fig. 5 (grid a in 
Fig. 3), with spacings twice as large and one-and-a-half 
times smaller, respectively. The observed growth of u, in 
Fig. 7 implies a nonlinear dependence on grid spacing 6x, 

0, - (bxy’, (28) 

where a1 = aI decreases from c1r = 1.48 to a, = 1.16 
when D, is reduced from 0.999 to 0.990, approaching the 
value a, = 1 (predicted by Eq. (12)) as u, increases. Thus, in 
calculations performed with fixed c, and when the initial 
velocity profile is defined by a smooth function in such a 
way that the initial shear layer thickness is grid-indepen- 
dent, Eq. (28) implies an increase in effective Reynolds 
number with grid refinement (6x + 0) according to 

Reefi - 6x -‘l(oc). (294 
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In the case of the initial step-function velocity profile 
considered in this work, for which the initial thickness of 
the shear layer is of order 6x, we get 

ReeK - ax1 -al(&) W’b) 

whereas Eq. (12) implies a value independent of grid size for 
Reerr. The dependence of the effective numerical diffusion on 
the Courant number is shown in Fig. 10 for grid c in Fig. 3. 
The results now suggest the nonlinear dependence 

u, - c-“2(&), (30) 

where ~1~ = @*(DC) increase from LX* = 0.49 to CI~ = 0.83 when 
D, decreases from 0.999 to 0.990, in contrast with the 
inversely proportional dependence on Courant number in 
Eq. (12). As noted above, the functional behavior predicted 
by Eq. ( 12) ( CQ = 1) is approached for larger values of u, . 

The effects of non-uniformities on the gridding are 
examined in Figs. 11-13 for D, = 0.999. We first examine the 
effects of changing the aspect ratio SxjSy of the grid while 
maintaining it evenly spaced in each direction. The plot of 
rms deviations in Fig. 11 suggests that changing from 
6x/6y = 1 (grid a of Fig. 3) to SxjSy = 2.5 (grid d of Fig. 3) 
does not significantly affect the nature of the effective 
numerical diffusion. This is physically expected to some 
extent. It indicates that for aspect ratios 6x/6y 2 1, u, is 
essentially determined by the (numerical) viscous term 
proportional to ~2~/~y2 introduced by the algorithm. In 
Fig. 12 we include results obtained on grids d and e of 
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FIG. 10. Mixing layer simulation on grid c, I = 5. Dependence of 
global numerical diffusion on Courant number for D, = 0.990, 0.999. The 
dashed lines have the slope a2 = 1 predicted by Eq. (12). 
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FIG. 11. Mixing layer simulation on grids a and d, i = 10, D, = 0.999. 
Dependence of global numerical diffusion on gridding aspect ratio. 

Fig. 3, both having a basic gridding aspect ratio 2.5 which is 
maintained throughout the region of interest in one case 
and geometrically increased in a significant portion of the 
domain in the other. As can be expected, the results indicate 
that if much larger non-uniformities in the gridding are 
introduced through grid stretching, the numerical term 
associated with a*u/ax* can no longer be considered 
negligible and the effective diffusion can consequently 
become significantly larger than in the uniform case. 
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FIG. 12. Mixing layer simulation on grids d and e, I = 10, D, = 0.999. 
Effects of grid stretching in x-direction on global numerical ditfusion. 



174 GRINSTEIN AND GUIRGUIS 

a 

b 

0.38 ’ 
0 

- 0.38 1 I 

0 X (cm) 3.3 

FIG. 13. Fully two-dimensional mixing layer simulation for 1= 5. 
Effects of gridding aspect ratio on global numerical diffusion for 
D, = 0.999. (a) 6x = Sy (grid f); (b) dx = 2.56~ (grid g). Instantaneous flow 
visualization in terms of contours of vorticity (upper frame) and of a 
passive scalar convected with the flow velocity (lower frame). The contour 
intervals for each flow quantity are the same in (a) and (b). 

In order to further assess the dependence of the effective 
numerical viscosity on the gridding aspect ratio, we examine 
the results of planar shear-flow simulations also initialized 
with a step-function velocity profile, but for which the zero- 
transverse-velocity restriction is not enforced, so that vortex 
roll-up can now take place. Figure 13 shows typical instan- 
taneous visualizations using contours of vorticity (52) and of 
a passive scalar (4) convected with the flow velocity, where 
0 is defined to be initially zero for the slower stream and 
unity for the faster stream. The calculations are performed 
on grids f and g of Fig. 3, and the flow is organized by 
adding a small time-dependent perturbation to the stream- 
wise velocity at the inflow with frequency equal to that of 
the most unstable mode. The figure shows the presence of 
vortex rolls resulting from the evolution of the nonlinear 
Kelvin-Helmholtz instability. The frames shown are 
associated with the same physical time, and identical condi- 
tions except for the uniform gridding, which involves aspect 
ratio &/6,v = 1 in one case (Fig. 13a), and Sx/Sy = 2.5 in the 
other (Fig. 13b). In both simulations, the Courant number 
is c = 0.4, 6y = 0.015 cm, and ;1= 5, with air streams under 
the same temperature and pressure conditions as in the 
cases discussed previously. In particular, the conditions 
of the simulations are such that the expected numerical 

diffusivities in the case with 6x/6y = 1 are nearly the same 
as those found in the more resolved case of Fig. 9 (for 
D, = 0.999, and 6x = 6y = 0.016 cm). For each flow quan- 
tity, the contour intervals are chosen to be the same in 
Figs. 13a and 13b. The effects of numerical diffusion on the 
flow can then be inferred by examining the spreading of the 
high-strain region at the interface between the two streams 
of 4 based on the distribution and density of contours, and 
by examining the numerical stability of the vertical struc- 
tures based on the vorticity contours. In turn, o,-based on 
the comparison of the laminar computed and theoretical 
solutions-gives us an indication of the amount of diffusion 
responsible for that spreading. 

In the case of the calculation on grid f (aspect ratio unity), 
numerical diffusion effects are responsible for the initial 
spreading of the step-velocity profile onto an inflectional 
profile confined within 3-5 computational cells and are 
otherwise essentially negligible further on downstream, as 
shown in Fig. 13a. In this case, the numerical diffusion 
effects are isotropic, they preserve the large-scale features of 
the flow without significant distortion, and thus mimic very 
small physical-viscosity effects. Although the general 
features of the flow are similar in both calculations, it is 
apparent that Fig. 13b, for which 6x16~ = 2.5, shows con- 
siderably larger numerical diffusion effects. This is indicated 
by the significant spreading of the high-strain regions (par- 
ticularly on the faster side) and by the increasingly poor 
resolution of the vortex rolls in terms of vorticity contours 
as we move downstream. This is in contrast with the results 
in Fig. 11, suggesting that no significant differences should 
be expected between calculations on grids f and g. A major 
difference, however, is that the strain direction is now not 
necessarily restricted to the transverse direction, and when 
6x > Sy the high-strain region is diffused more in the 
x-direction than in the y-direction. 

4. CONCLUSIONS 

We have shown that the nonlinear residual numerical dif- 
fusion of the FCT shear-flow model with D, 5 1 can emulate 
the effects of physical viscosity. Effective (global) measures 
of the numerical viscous diffusion in the model, u,, were 
obtained by comparing the numerical spread of Iow-Mach- 
number simulated mixing layers with the theoretical spread 
predicted by boundary layer theory. Associated with v,, the 
profiles of calculated x-momentum at different streamwise 
locations collapse quite well in the vicinity of the theoretical 
results when plotted as a function of the similarity variable 
q. We found that the global numerical diffusion is not very 
sensitive to changes in free-steam velocity ratio A, and can 
be reduced to a desired level by refining the grid spacing. 
For example, for D, = 0.999, when using the uniform grid a 
in Fig. 3, and depending on 1, the optimal v, was found to 
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vary within a range of 80 Oh-100 % of the physical viscosity 
value for air at the temperature and pressure conditions of 
the simulations. 

When nonsquare uniform grids are used, the numerical 
diffusion is not isotropic and the present approach for its 
global interpretation is difficult to implement, although it 
can conceivably be used to obtain bounds on its magnitude. 
We found that the large-scale features of the shear flow can 
be significantly distorted by the effects of the non-isotropic 
numerical diffusion. These results suggest that in inviscid 
simulations of shear flows where numerical diffusion is the 
only cause of momentum diffusion, grids with aspect ratios 
as close to unity as possible should be used to minimize 
spurious flow distortions. This requirement can be clearly 
relaxed when viscous terms are included in the model and 
the grid size is chosen to ensure that numerical diffusion is 
negligible as compared to physical diffusive effects. 
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